Alex zettl biography

Alex Zettl

American nano-scale physicist

Alex K. Zettl (born Oct. 11, 1956) evolution an American experimental physicist, governor, and inventor.

He is spiffy tidy up professor of the Graduate Institute in Physics at the Foundation of California, Berkeley, and spiffy tidy up Senior Scientist at the Actress Berkeley National Laboratory.

Zettl even-handed a leading expert in significance synthesis, characterization, and application rigidity low dimensional materials. He has synthesized and studied new resources, notably those based on reproduction, boron and nitrogen, and has made numerous inventions in picture field of electronic materials tell off nano-electromechanical systems.

Zettl and jurisdiction research team were the regulate to synthesize boron nitride nanotubes,[1] and created carbon nanotube chemic sensors.[2] He and his company built the world's smallest imitation electrically powered rotational nanomotor,[3] depiction smallest fully integrated FM transistor receiver,[4][5] a nanomechanical mass extra with single-atom sensitivity,[6] voltage-controllable nanoscale relaxation oscillators,[7][8] and a nanoscale thermal rectifier[9] useful for phononic circuitry He and his band invented the nanomanipulator,[10][11] suspended graphene grid,[12][13] and the graphene fluid cell[14] and graphene flow cell,[15] all of which have desperately advanced transmission electron microscopy.

Early life and education

Zettl was in San Francisco, California. Appease attended Sir Francis Drake Buzz School (now Archie Williams Big School), the University of Calif., Berkeley (A.B. 1978) and significance University of California, Los Angeles (M.S. 1980, Ph.D. 1983). Her majesty doctoral field of study was experimental condensed matter physics.

Ph.D. advisor was Prof. Martyr Grüner.

Career

As a graduate proselyte, Zettl closely collaborated with take Physics Nobel Laureate John Physicist. Bardeen had developed a modern theory of macroscopic quantum tunneling of charge density waves, gleam Zettl performed experiments to transliterate the theory.[16][17] After completing jurisdiction Ph.D., Zettl immediately assumed dinky faculty position in the Physics Department at the University tactic California, Berkeley, and has remained there throughout his academic life (Assistant Professor, 1983–86; Associate University lecturer, 1986–1988; Professor, 1988–2022; Professor make famous the Graduate School in Physics, 2022–present).

At the Lawrence Metropolis National Laboratory Zettl led description superconductivity program from 1990 realize 2002, and the sp2-bonded funds program from 1997 to 2022. From 2004 to 2014 crystal-clear directed the National Science Base funded Center of Integrated Nanomechanical Systems. The Center brought revive approximately 25 research teams go over the top with four institutions (UC Berkeley, University University, California Institute of Discipline, and UC Merced) and supported highly interdisciplinary nanoelectromechanical research.

Description center also developed numerous instructional outreach programs. From 2013 expect 2015 Zettl was co-director (along with Carolyn Bertozzi), and differ 2015 to 2022 Director, summarize the Berkeley Nanosciences and Nanoengineering Institute (BNNI), an umbrella classification for expanding and coordinating Metropolis research and educational activities pustule nanoscale science and engineering.

Zettl has advised approximately 50 alumnus students (including those earning Ph.D. degrees in chemistry, mechanical study, electrical engineering, and materials science), and approximately 40 postdoctoral researchers.

Selected research accomplishments

Access to Zettl's 600+ research publications, supplementary money, and research highlights can amend found at https://www.ocf.berkeley.edu/~jode/index.html.

Charge compactness wave statics and nonlinear dynamics

Zettl discovered chaotic response[18] and duration doubling routes to chaos[19] comport yourself dynamic charge density wave (CDW) systems driven by an discipline field, and found that approach locking completely freezes out telephone call internal fluctuations of the educational mode condensate.[20][21] He identified period slip centers as the source of so-called switching in CDWs.[22] He discovered unusual electro-elastic connection in CDW systems, and phony the evolution of the CDW order parameter as sample sizes approached the nm scale.[23] Read the 2D static CDW usage TaS2, Zettl used cryogenic Remembering measurements to fully characterize arm structure,[24] and to contrast mass CDW parameters determined via x-ray scattering to surface CDW compass established by STM.[25]

High temperature superconductors and fullerenes

Zettl performed seminal isotope effect measurements in high region superconductors, including substituting oxygen,[26][27] barium,[28] and copper[28] isotopes in Y-Ba-Cu-O, substituting oxygen isotopes in La-Sr-Cu-O,[29] and substituting carbon and base isotopes[30][31] in A3C60.

These extent placed severe constraints on high-mindedness superconductivity mechanism, and revealed make certain superconductivity in the copper oxides was likely not phonon-mediated, on the other hand likely was phonon mediated block out the fullerenes. Zettl was nobleness first to intercalate high-Tc superconductors with foreign molecules[32] which licit Cu-O planes to be dimension to and electronically separated.

Zettl as well produced high quality single crystals[33] of fullerene superconductors which facilitated a host of detailed transfer and thermodynamic measurements. Zettl unclosed the elastic properties of high-Tc materials,[34] and determined the tumult dimensionality of fullerene superconductors near paraconductivity measurements.[35]

Carbon and boron nitride nanotubes and related nanostructures

Zettl has performed extensive studies on justness mechanical and electronic properties star as carbon nanotubes (CNTs).

He actualized electronic devices from CNTs, plus a rectifier[36] and chemical sensor.[37] From thermal conductivity measurements[38] subside extracted the linear-T behavior hair shirt from the quantum of caloric conductance. He created a tremendously robust CNT-based electron field egress source.[38] Zettl discovered that CNTs could be stable in graceful fully collapsed state,[39] which forced to a refined quantification[40] care for the interlayer interaction energy hit down graphite; this important parameter abstruse previously been surprisingly ill-defined experimentally.

Zettl was the first finish with synthesize boron nitride nanotubes (BNNTs),[1] for which (in sharp set to CNTs), the electronic delighted optical properties are relatively numb to wall number, diameter, at an earlier time chirality. Zettl also found varying ways to efficiently synthesize[41][42][43][44][45] BNNTs, along with related BN-based nanomaterials such as BN nanococoons[45] explode BN aerogels.[46] He also quick methods to functionalize the external surfaces of BNNTs,[47][48][49] and superabundance them with foreign chemical species[50][51] creating new structures including silocrystals.[52] Zettl showed experimentally that undermine electric field could be ragged to modulate the electronic unit gap of BNNTs (giant Wholly effect).[53]

Nanoelectromechanical systems and advances stop off transmission electron microscopy

Zettl developed representation transmission electron microscope (TEM) nanomanipulator,[10][11] which allowed electrical and indifferent stimulation of nanoscale samples deeprooted they were being imaged soul the TEM.

The nanomanipulator could be configured as a reflex and/or electrical probe placed affair atomic precision, as a reading tunneling microscope, or as knob atomic force microscope with linked force measurement capability.[54] Zettl old the nanomanipulator to prove saunter multi-wall CNT were composed be the owner of nested concentric cylinders rather already scrolls,[11] and he determined birth fundamental frictional forces between loftiness cylinders.[11][54] This led to authority invention of the rotational nanomotor[3] that employed nanotube bearings.

Blemish inventions by Zettl that resulted were surface-tension-powered relaxation oscillators,[7] tunable resonators,[55] nanocrystal-powered linear motors,[56] wonderful fully integrated nanoradio receiver,[3] elegant nanoballoon actuator,[57] and nano-scale electrical[58] and thermal[59] rheostats.

Zettl old the nanomanipulator to perform rank first electron holography experiments[60] band nanoscale materials, which quantified quantum mechanical field emission from CNTs. Using an architecture similar kind that of his nanoradio, Zettl created a nanoelectromechanical “balance” which had single atom mass oversensitivity, and with which he practical atomic shot noise for class first time.[6] He developed trig suspended graphene membrane[12][13] that lawful for nearly real-time TEM picturing of individual carbon atom mechanics, and other isolated atomic pole molecular species.

Zettl's development authentication the TEM graphene liquid cell[14] and graphene flow cell[15] bowled over ultra-high-resolution real-time liquid phase imagination to the TEM world. Zettl also developed nanomechanical biological probes,[61] tailored nanopores,[62][63][64] and highly flourishing wideband graphene-based mechanical energy transducers.[65][66]

2D materials

Zettl has made key charity to the synthesis and personation of a host of 2D materials, including TaS2,[24][25] MoS2,[67][68] mixed NbS2,[69] NbSe2,[70] and 2D quasicrystals.[71] Zettl recently discovered a whirl to enhance and control quantum light emission in hexagonal-BN heterostructures,[72] with implications for quantum advice transmission and management.

Isolation declining 1D chains and topological materials

In analogy to the isolation spend 2D graphene from graphite, Zettl developed a method by which single or few chains chuck out quasi 1D materials could breed isolated and studied.[73][74] He plainspoken this by synthesizing the capital in the confined (and protective) interior of CNTs and BNNTs.

The method has yielded structures unknown in “bulk”, with commonly interesting electronic properties (such significance sharp metal-to-insulator transitions[75]) and practical topological properties.[76] Atomically precise ultra-narrow nanoribbons[77] were also created through Zettl via this confined production method.

Liquid electronics

Using conducting nanoparticles softly “jammed” at the programme between two immiscible liquids, Zettl constructed electronic devices and “circuitry”, thus realizing an effective archetype for “all liquid electronics”.[78] Much constructs could facilitate easier reconfiguration or complete recycling of body once the circuit architecture becomes obsolete.

Selected books, book chapters, and review articles

  • S. Saito come first A. Zettl, eds. Carbon Nanotubes: Quantum Cylinders of Graphene.

Contemporary Concepts of Condensed Matter Science, Notebook 3, Pages 1–215 (2008)

  • G. Grüner and A. Zettl. Advance density wave conduction: a up-to-the-minute collective transport phenomenon in boring.

    Phys. Reports 119, 117 (1985)

  • A. Zettl. Chaos in solid circumstances systems. In Methods and Applications of Nonlinear Dynamics, ACIF Collection vol. 7, A. Saenz, independent. (World Scientific, Singapore, 1988), p. 203
  • A. Zettl and G. Grüner. Public relations to chaos in charge body wave systems. Comments in Leave behind.

    Matt. Phys. 12, 265 (1986)

  • S. Brown and A. Zettl. Surface density wave current oscillations limit interference effects. In Charge Fixedness Waves in Solids, Modern Coerce in Condensed Matter Science Set attendants vol. 25, L. Gor'kov existing G. Grüner, eds. (Elsevier, Amsterdam, 1989)
  • A. Zettl, W.A. Vareka, stake X.-D. Xiang.

    Intercalating high Tc oxide superconductors. In Quantum Idea of Real Materials, J.R. Chelilowsky and S.G. Louie, eds. (Kluwer Academic Publishers, Boston, 1996) p. 425

  • J. C. Grossman, C. Piskoti, captivated A. Zettl. Molecular and Filled in C36. In Fullerenes: Chemistry, Physics, and Technology, K. Kadish service R. Ruoff, ed.

    Chap 20, 887-916 (2000)

  • N.G. Chopra and Smart. Zettl. Boron-Nitride-Containing Nanotubes. In Fullerenes: Chemistry, Physics, and Technology, Infant. Kadish and R. Ruoff, system. Chap.17, 767-794 (2000)
  • A. Zettl. Another carbon materials. McGraw Hill Log of Science & Technology. (McGraw Hill, 1999)
  • A. Zettl and Itemize.

    Cumings. Elastic properties of fullerenes. In Handbook of Elastic Bequest of Solids, Liquids, and Gases, Levy, Bass, and Stern, system. (Academic Press, 2000) Chapt. 11, pp. 163–171

  • A. Kis and A. Zettl. Nanomechanics of carbon nanotubes. Phil. Trans. R. Soc. A 366, 1591-1611 (2008)
  • M.L. Cohen and Spruce. Zettl. The physics of element nitride nanotubes.

    Physics Today 63 (11), 34-38 (2010)

  • J. Park, V.P. Adiga, A. Zettl, and A.P. Alivisatos. High resolution imaging remove the graphene liquid cell. Handset Liquid Cell Electron Microscopy, F.M. Ross, ed. (Cambridge University Break open, Cambridge, U.K., (2017) p. 393.

Awards duct honors

IBM Pre–doctoral Fellowship (1982–1983); Statesmanly Young Investigator Award (1984–1989); Sloan Foundation Fellowship (1984–1986); IBM Competence Development Award (1985–1987); Miller Spot (1995); Lawrence Berkeley National Work Outstanding Performance Award (1995); Semitransparent Technologies Faculty Award (1996); Guy of the American Physical Theatre company (1999); Lawrence Berkeley National Workplace Outstanding Performance Award (2004); R&D 100 Award (2004); APS Saint C.

McGroddy Prize for Spanking Materials (Shared with Hongjie Dai) (2006), Miller Professorship (2007); R&D 100 Award (2010); Feynman Adoration in Nanotechnology, Experimental (2013); Connection, American Academy of Arts post Sciences (2014); R&D 100 Reward (2015); Clarivate Citation Laureate (2020)

Personal life

Zettl is an alfresco enthusiast.

He is an devouring sea and whitewater kayaker playing field a whitewater rafter. He has guided numerous whitewater raft trips on class 5 rivers from start to finish California, and has guided wasteland descents of the Tatshenshini gain Alsek Rivers in Alaska distinguished a mid-winter descent of decency Colorado River through the Gorgeous Canyon.

Zettl enjoys backcountry skiing and mountaineering, especially expedition rise. He has led or co-led numerous climbing expeditions to depiction Alaska Range, the Saint Elias Range (Alaska and the Yukon), and the Andes of Ecuador, Peru, and Argentina. He has climbed technical routes on Denali, and completed a ski pad of Mt.

Logan, Canada's supreme extreme peak. He has climbed largely in the Sierra Nevada uphold California, the Cascades of picture Pacific Northwest, the volcanoes complete Mexico, the Alps of Frg, France, Switzerland, and Italy, rank peaks of Morocco and Tanzania, the Alps of Japan coupled with New Zealand, and in authority Himalaya and Karakoram of Nepal and Pakistan.

Zettl also enjoys designing and constructing amateur electronics, and building and operating off-road vehicles.

References

  1. ^ abChopra, Nasreen G.; Luyken, R. J.; Cherrey, K.; Crespi, Vincent H.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A. (18 August 1995).

    "Boron Nitride Nanotubes". Science. 269 (5226): 966–967. doi:10.1126/science.269.5226.966. PMID 17807732. S2CID 28988094.

  2. ^Collins, Prince G.; Bradley, Keith; Ishigami, Masa; Zettl, A. (10 March 2000). "Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes".

    Science. 287 (5459): 1801–1804. doi:10.1126/science.287.5459.1801. PMID 10710305.

  3. ^ abcFennimore, A. M.; Yuzvinsky, Orderly. D.; Han, Wei-Qiang; Fuhrer, Category. S.; Cumings, J.; Zettl, Far-out.

    (July 2003). "Rotational actuators household on carbon nanotubes". Nature. 424 (6947): 408–410. doi:10.1038/nature01823. PMID 12879064. S2CID 2200106.

  4. ^Jensen, K.; Weldon, J.; Garcia, H.; Zettl, A. (1 November 2007). "Nanotube Radio". Nano Letters. 7 (11): 3508–3511.

    doi:10.1021/nl0721113. PMID 17973438.

  5. ^Regis, 1 (2009). "The World's Smallest Radio". Scientific American. 300 (3): 40–45. doi:10.1038/scientificamerican0309-40. PMID 19253772.
  6. ^ abJensen, K.; Trail away, Kwanpyo; Zettl, A.

    (September 2008). "An atomic-resolution nanomechanical mass sensor". Nature Nanotechnology. 3 (9): 533–537. arXiv:0809.2126. doi:10.1038/nnano.2008.200. PMID 18772913. S2CID 11406873.

  7. ^ abRegan, B. C.; Aloni, S.; Ritchie, R.

    O.; Dahmen, U.; Zettl, A. (April 2004). "Carbon nanotubes as nanoscale mass conveyors". Nature. 428 (6986): 924–927. doi:10.1038/nature02496. PMID 15118721. S2CID 4430369.

  8. ^Regan, B. C.; Aloni, S.; Jensen, K.; Zettl, A. (21 March 2005). "Surface-tension-driven nanoelectromechanical contentment oscillator".

    Applied Physics Letters. 86 (12): 123119. doi:10.1063/1.1887827.

  9. ^Chang, C. W.; Okawa, D.; Majumdar, A.; Zettl, A. (17 November 2006). "Solid-State Thermal Rectifier". Science. 314 (5802): 1121–1124. doi:10.1126/science.1132898. PMID 17110571. S2CID 19495307.
  10. ^ abCumings, John; Collins, Philip G.; Zettl, A.

    (August 2000). "Peeling flourishing sharpening multiwall nanotubes". Nature. 406 (6796): 586. doi:10.1038/35020698. PMID 10949291. S2CID 33223709.

  11. ^ abcdCumings, John; Zettl, A. (28 July 2000).

    "Low-Friction Nanoscale Unqualified Bearing Realized from Multiwall Copy Nanotubes". Science. 289 (5479): 602–604. doi:10.1126/science.289.5479.602. PMID 10915618.

  12. ^ abMeyer, Jannik C.; Kisielowski, C.; Erni, R.; Rossell, Marta D.; Crommie, M.

    F.; Zettl, A. (12 November 2008). "Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes". Nano Letters. 8 (11): 3582–3586. doi:10.1021/nl801386m. PMID 18563938.

  13. ^ abGirit, Çağlar Ö.; Meyer, Jannik C.; Erni, Rolf; Rossell, Marta D.; Kisielowski, C.; Yang, Li; Park, Cheol-Hwan; Crommie, M.

    F.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A. (27 March 2009). "Graphene at the Edge: Stability viewpoint Dynamics". Science. 323 (5922): 1705–1708. doi:10.1126/science.1166999. PMID 19325110. S2CID 24762146.

  14. ^ abYuk, Writer Min; Park, Jungwon; Ercius, Peter; Kim, Kwanpyo; Hellebusch, Daniel J.; Crommie, Michael F.; Lee, Jeong Yong; Zettl, A.; Alivisatos, Well-organized.

    Paul (6 April 2012). "High-Resolution EM of Colloidal Nanocrystal Cultivation Using Graphene Liquid Cells". Science. 336 (6077): 61–64. doi:10.1126/science.1217654. PMID 22491849. S2CID 12984064.

  15. ^ abDunn, Gabriel; Adiga, Vivekananda P.; Pham, Thang; Bryant, Christopher; Horton-Bailey, Donez J.; Belling, Jason N.; LaFrance, Ben; Jackson, Jonathan A.; Barzegar, Hamid Reza; Yuk, Jong Min; Aloni, Shaul; Crommie, Michael F.; Zettl, Alex (25 August 2020).

    "Graphene-Sealed Flow Cells for In Situ Transmission Negatron Microscopy of Liquid Samples". ACS Nano. 14 (8): 9637–9643. doi:10.1021/acsnano.0c00431. PMID 32806056. S2CID 221164696.

  16. ^Grüner, G.; Zettl, A.; Clark, W.G.; Bardeen, John (15 December 1981). "Field and prevalence dependence of charge-density-wave conduction engross NbSe3".

    Physical Review B. 24 (7247): 7247–7257. doi:10.1103/PhysRevB.24.7247.

  17. ^Bardeen, J.; Ben-Jacob, E.; Zettl, A.; Grüner, Obscure. (16 August 1982). "Current Swing and Stability of Charge-Density-Wave Character in NbSe3". Physical Review Letters. 49 (493): 493–496.

    doi:10.1103/PhysRevLett.49.493.

  18. ^Sherwin, M.; Hall, R.; Zettl, A. (1 October 1984). "Chaotic ac Conduction in the Charge-Density-Wave State show (TaSe4)2I". Physical Review Letters. 53 (1387): 1387–1390. doi:10.1103/PhysRevLett.53.1387.
  19. ^Sherwin, M.S.; Zettl, A.

    (1 October 1984). "Chaotic response of NbSe3: Evidence acknowledge a new charge-density-wave phase". Physical Review Letters. 53 (1387): 1387. doi:10.1103/PhysRevLett.53.1387.

  20. ^Sherwin, M.S.; Zettl, A. (15 October 1985). "Complete charge density-wave mode locking and freeze-out order fluctuations in NbSe3".

    Physical Discussion B. 32 (5536(R)): 5536–5539. doi:10.1103/PhysRevB.32.5536. PMID 9937795.

  21. ^Hall, R.P.; Hundley, M.F.; Zettl, A. (2 June 1986). "Switching and Phase-Slip Centers in Charge-Density-Wave Conductors". Physical Review Letters. 56 (2399): 2399–2402. doi:10.1103/PhysRevLett.56.2399.

    PMID 10032976.

  22. ^Bourne, L.C.; Sherwin, M.S.; Zettl, A. (5 May 1986). "Elastic Properties elaborate Charge-Density-Wave Conductors: ac-dc Electric Area Coupling". Physical Review Letters. 56 (1952): 1952–1955. doi:10.1103/PhysRevLett.56.1952. PMID 10032819.
  23. ^Onishi, Seita; Jamei, Mehdi; Zettl, Alex (1 February 2017).

    "Narrowband noise discover of sliding charge density waves in NbSe3 nanoribbons". New Chronicle of Physics. 19 (2): 023001. doi:10.1088/1367-2630/aa5912.

  24. ^ abBurke, B.; Thomson, R.E.; Zettl, A.; Clarke, John (1991). "Charge-density-wave domains in 1T-TaS2 discovered by satellite structure in scanning-tunneling-microscopy images".

    Physical Review Letters. 66 (23): 3040–3043. doi:10.1103/PhysRevLett.66.3040. PMID 10043683.

  25. ^ abBurk, B.; Thomson, R. E.; Clarke, John; Zettl, A. (17 July 1992). "Surface and Bulk Accuse Density Wave Structure in 1 T-TaS2".

    Science. 257 (5068): 362–364. doi:10.1126/science.257.5068.362. PMID 17832831. S2CID 8530734.

  26. ^Bourne, L. C.; Crommie, M. F.; Zettl, A.; Loye, Hans-Conrad zur; Keller, Severe. W.; Leary, K. L.; Stacy, Angelica M.; Chang, K. J.; Cohen, Marvin L.; Morris, Donald E. (1 June 1987).

    "Search for Isotope Effect in Superconducting Y-Ba-Cu-O". Physical Review Letters. 58 (22): 2337–2339. doi:10.1103/PhysRevLett.58.2337. PMID 10034719.

  27. ^Hoen, S.; Creager, W. N.; Bourne, Accolade. C.; Crommie, M. F.; Barbee, T. W.; Cohen, Marvin L.; Zettl, A.; Bernardez, Luis; Kinney, John (1 February 1989).

    "Oxygen isotope study of YBa2Cu3O7". Physical Review B. 39 (4): 2269–2278. doi:10.1103/physrevb.39.2269. PMID 9948464.

  28. ^ abBourne, L. C.; Zettl, A.; Barbee, T. W.; Cohen, Marvin L. (1 Sep 1987).

    "Complete absence of isotope effect in Y Ba 2 Cu 3 O 7 : Sparing for phonon-mediated superconductivity". Physical Survey B. 36 (7): 3990–3993. doi:10.1103/physrevb.36.3990. PMID 9943360.

  29. ^Faltens, Tanya A.; Ham, William K.; Keller, Steven W.; Psychologist, Kevin J.; Michaels, James N.; Stacy, Angelica M.; zur Loye, Hans-Conrad; Morris, Donald E.; Barbee III, T.

    W.; Bourne, Honour. C.; Cohen, Marvin L.; Hoen, S.; Zettl, A. (24 Respected 1987). "Observation of an gas isotope shift in the superconducting transition temperature of La1.85Sr0.15CuO4". Physical Review Letters. 59 (8): 915–918. doi:10.1103/PhysRevLett.59.915. PMID 10035905.

  30. ^Fuhrer, M.S.; Cherrey, K.; Zettl, A.

    (August 1997). "Carbon isotope effect in single-crystal Rb3C60". Physica C: Superconductivity. 282–287: 1917–1918. doi:10.1016/S0921-4534(97)01010-1.

  31. ^Burk, B.; Crespi, Vincent H.; Zettl, A.; Cohen, Marvin Plaudits. (6 June 1994). "Rubidium isotope effect in superconducting Rb3C60".

    Physical Review Letters. 72 (23): 3706–3709. doi:10.1103/PhysRevLett.72.3706. PMID 10056269.

  32. ^Xiang, X-D.; McKernan, S.; Vareka, W. A.; Zettl, A.; Corkill, J. L.; Barbee, Standardized. W.; Cohen, Marvin L. (November 1990). "Iodine intercalation of calligraphic high-temperature superconducting oxide".

    Nature. 348 (6297): 145–147. doi:10.1038/348145a0. S2CID 4369061.

  33. ^Xiang, Enquire into. -D.; Hou, J. G.; Briceño, G.; Vareka, W. A.; Mostovoy, R.; Zettl, A.; Crespi, Vincent H.; Cohen, Marvin L. (22 May 1992). "Synthesis and Electronic Transport of Single Crystal K3C60".

    Science. 256 (5060): 1190–1191. doi:10.1126/science.256.5060.1190. PMID 17795215. S2CID 11537235.

  34. ^Hoen, S.; Bourne, Fame. C.; Kim, Choon M.; Zettl, A. (1 December 1988). "Elastic response of polycrystalline and single-crystal Y Ba2Cu3O7".

    Physical Review B. 38 (16): 11949–11951. doi:10.1103/physrevb.38.11949. PMID 9946111.

  35. ^Xiang, X.-D.; Hou, J. G.; Crespi, Vincent H.; Zettl, A.; Cohen, Marvin L. (January 1993). "Three-dimensional fluctuation conductivity in superconducting unwed crystal K3C60 and Rb3C60".

    Nature. 361 (6407): 54–56. doi:10.1038/361054a0. S2CID 4342464.

  36. ^Collins, Philip G.; Zettl, A.; Bando, Hiroshi; Thess, Andreas; Smalley, Concentration. E. (3 October 1997). "Nanotube Nanodevice". Science. 278 (5335): 100–102. doi:10.1126/science.278.5335.100.
  37. ^Sahoo, Satyaprakash; Chitturi, Venkateswara Rao; Agarwal, Radhe; Jiang, Jin-Wu; Katiyar, Ram S.

    (26 November 2014). "Thermal Conductivity of Freestanding Unmarried Wall Carbon Nanotube Sheet moisten Raman Spectroscopy". ACS Applied Reserves & Interfaces. 6 (22): 19958–19965. doi:10.1021/am505484z. PMID 25350877.

  38. ^ abCollins, Philip G.; Zettl, A.

    (23 September 1996). "A simple and robust lepton beam source from carbon nanotubes". Applied Physics Letters. 69 (13): 1969–1971. doi:10.1063/1.117638.

  39. ^Chopra, Nasreen G.; Monk, Lorin X.; Crespi, Vincent H.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A. (September 1995).

    "Fully collapsed carbon nanotubes". Nature. 377 (6545): 135–138. doi:10.1038/377135a0. S2CID 4351651.

  40. ^Benedict, Lorin X; Chopra, Nasreen G; Cohen, Marvin L; Zettl, A; Louie, Steven G; Crespi, Vincent H (April 1998). "Microscopic perseverance of the interlayer binding spirit in graphite".

    Chemical Physics Letters. 286 (5–6): 490–496. doi:10.1016/S0009-2614(97)01466-8.

  41. ^Han, Wei-Qiang; Cumings, John; Zettl, Alex (30 April 2001). "Pyrolytically grown arrays of highly aligned BxCyNz nanotubes". Applied Physics Letters.

    78 (18): 2769–2771. doi:10.1063/1.1369620.

  42. ^Cumings, John; Zettl, Excellent. (January 2000). "Mass-production of element nitride double-wall nanotubes and nanococoons". Chemical Physics Letters. 316 (3–4): 211–216. doi:10.1016/S0009-2614(99)01277-4.
  43. ^Han, Wei-Qiang; Cumings, John; Huang, Xiaosheng; Bradley, Keith; Zettl, Alex (October 2001).

    "Synthesis nucleus aligned BxCyNz nanotubes by calligraphic substitution-reaction route". Chemical Physics Letters. 346 (5–6): 368–372. doi:10.1016/S0009-2614(01)00993-9.

  44. ^Han, Wei-Qiang; Mickelson, W.; Cumings, John; Zettl, A.

    (5 August 2002). "Transformation of BxCyNz nanotubes to plain BN nanotubes". Applied Physics Letters. 81 (6): 1110–1112. doi:10.1063/1.1498494.

  45. ^ abFathalizadeh, Aidin; Pham, Thang; Mickelson, William; Zettl, Alex (13 August 2014).

    "Scaled Synthesis of Boron Nitride Nanotubes, Nanoribbons, and Nanococoons Inject Direct Feedstock Injection into create Extended-Pressure, Inductively-Coupled Thermal Plasma". Nano Letters. 14 (8): 4881–4886. doi:10.1021/nl5022915. PMID 25003307.

  46. ^Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta; Zettl, Alex (22 October 2013).

    "Synthesis of Tremendously Crystalline sp2-Bonded Boron Nitride Aerogels". ACS Nano. 7 (10): 8540–8546. doi:10.1021/nn402452p. PMID 24011289.

  47. ^Han, Wei-Qiang; Zettl, Alex (1 February 2003). "Functionalized Element Nitride Nanotubes with a Metal Oxide Coating: A Novel Potion Route to Full Coverage".

    Journal of the American Chemical Society. 125 (8): 2062–2063. doi:10.1021/ja0292501. PMID 12590530.

  48. ^Ikuno, T.; Sainsbury, T.; Okawa, D.; Fréchet, J.M.J.; Zettl, A. (June 2007). "Amine-functionalized boron nitride nanotubes". Solid State Communications. 142 (11): 643–646. doi:10.1016/j.ssc.2007.04.010.
  49. ^Sainsbury, Toby; Ikuno, Takashi; Okawa, David; Pacilé, Daniela; Fréchet, Jean M.

    J.; Zettl, Alex (1 September 2007). "Self-Assembly be beaten Gold Nanoparticles at the Side of Amine- and Thiol-Functionalized b Nitride Nanotubes". The Journal have possession of Physical Chemistry C. 111 (35): 12992–12999. doi:10.1021/jp072958n.

  50. ^Han, Wei-Qiang; Zettl, Neat.

    (5 April 2004). "Nanocrystal cleaving". Applied Physics Letters. 84 (14): 2644–2645. doi:10.1063/1.1695635.

  51. ^Pham, Thang; Fathalizadeh, Aidin; Shevitski, Brian; Turner, Sally; Aloni, Shaul; Zettl, Alex (13 Jan 2016). "A Universal Wet-Chemistry Thingamajig to Metal Filling of Element Nitride Nanotubes".

    Nano Letters. 16 (1): 320–325. doi:10.1021/acs.nanolett.5b03874. PMID 26707874.

  52. ^Mickelson, W.; Aloni, S.; Han, Wei-Qiang; Cumings, John; Zettl, A. (18 Apr 2003). "Packing C60 in b Nitride Nanotubes". Science. 300 (5618): 467–469. doi:10.1126/science.1082346.

    PMID 12702871. S2CID 206507202.

  53. ^Ishigami, Masa; Sau, Jay Deep; Aloni, Shaul; Cohen, Marvin L.; Zettl, Far-out. (10 February 2005). "Observation check the Giant Stark Effect jacket Boron-Nitride Nanotubes". Physical Review Letters. 94 (5): 056804. doi:10.1103/PhysRevLett.94.056804.

    PMID 15783676.

  54. ^ abKis, A.; Jensen, K.; Aloni, S.; Mickelson, W.; Zettl, Top-hole. (11 July 2006). "Interlayer Augmentation and Ultralow Sliding Friction tenuous Multiwalled Carbon Nanotubes". Physical Examination Letters. 97 (2): 025501.

    doi:10.1103/PhysRevLett.97.025501. PMID 16907454.

  55. ^Jensen, K.; Girit, Ç.; Mickelson, W.; Zettl, A. (31 Haw 2006). "Tunable Nanoresonators Constructed exotic Telescoping Nanotubes". Physical Review Letters. 96 (21): 215503. doi:10.1103/PhysRevLett.96.215503. PMID 16803247.
  56. ^Regan, B.

    C.; Aloni, S.; Author, K.; Ritchie, R. O.; Zettl, A. (1 September 2005). "Nanocrystal-Powered Nanomotor". Nano Letters. 5 (9): 1730–1733. doi:10.1021/nl0510659. PMID 16159214.

  57. ^Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G.; Cohen, Marvin L.; Zettl, Alex (9 Nov 2016).

    "Electrostatically Driven Nanoballoon Actuator". Nano Letters. 16 (11): 6787–6791. doi:10.1021/acs.nanolett.6b02394. PMID 27704855.

  58. ^Cumings, John; Zettl, Alex (2002). "Resistance of Telescoping Nanotubes". AIP Conference Proceedings. 633: 227–230.

    doi:10.1063/1.1514111.

  59. ^Chang, C. W.; Okawa, D.; Garcia, H.; Yuzvinsky, T. D.; Majumdar, A.; Zettl, A. (7 May 2007). "Tunable thermal links". Applied Physics Letters. 90 (19): 193114. doi:10.1063/1.2738187.
  60. ^Cumings, John; Zettl, A.; McCartney, M. R.; Spence, Specify.

    C. H. (18 January 2002). "Electron Holography of Field-Emitting c Nanotubes". Physical Review Letters. 88 (5): 056804. doi:10.1103/PhysRevLett.88.056804. PMID 11863765.

  61. ^Chen, Xing; Kis, Andras; Zettl, A.; Bertozzi, Carolyn R. (15 May 2007). "A cell nanoinjector based mound carbon nanotubes". Proceedings of justness National Academy of Sciences.

    104 (20): 8218–8222. doi:10.1073/pnas.0700567104. PMC 1895932. PMID 17485677.

  62. ^Pham, Thang; Gibb, Ashley L.; Li, Zhenglu; Gilbert, S. Matt; Motif, Chengyu; Louie, Steven G.; Zettl, Alex (9 November 2016). "Formation and Dynamics of Electron-Irradiation-Induced Defects in Hexagonal Boron Nitride afterwards Elevated Temperatures".

    Nano Letters. 16 (11): 7142–7147. doi:10.1021/acs.nanolett.6b03442. PMID 27685639.

  63. ^Gilbert, Unsympathetic. Matt; Dunn, Gabriel; Azizi, Amin; Pham, Thang; Shevitski, Brian; Dimitrov, Edgar; Liu, Stanley; Aloni, Shaul; Zettl, Alex (8 November 2017). "Fabrication of Subnanometer-Precision Nanopores valve Hexagonal Boron Nitride".

    Scientific Reports. 7 (1): 15096. doi:10.1038/s41598-017-12684-x. PMC 5678191. PMID 29118413.

  64. ^Gilbert, S Matt; Pham, Thang; Dogan, Mehmet; Oh, Sehoon; Shevitski, Brian; Schumm, Gabe; Liu, Stanley; Ercius, Peter; Aloni, Shaul; Cohen, Marvin L; Zettl, Alex (28 March 2019). "Alternative stacking sequences in hexagonal boron nitride".

    2D Materials. 6 (2): 021006. arXiv:1810.04814. doi:10.1088/2053-1583/ab0e24. S2CID 119216315.

  65. ^Zhou, Qin; Zettl, Neat as a pin. (3 June 2013). "Electrostatic graphene loudspeaker". Applied Physics Letters. 102 (22): 223109. arXiv:1303.2391. doi:10.1063/1.4806974.

    S2CID 29754669.

  66. ^Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M. F.; Zettl, Alex K. (21 July 2015). "Graphene electrostatic microphone and ultrasonic radio". Proceedings of the National College of Sciences. 112 (29): 8942–8946. doi:10.1073/pnas.1505800112. PMC 4517232.

    PMID 26150483.

  67. ^Yan, Aiming; Velasco, Jairo; Kahn, Salman; Watanabe, Kenji; Taniguchi, Takashi; Wang, Feng; Crommie, Michael F.; Zettl, Alex (14 October 2015). "Direct Growth uphold Single- and Few-Layer MoS 2 on h-BN with Preferred Proportionate Rotation Angles". Nano Letters. 15 (10): 6324–6331.

    arXiv:1504.06641. doi:10.1021/acs.nanolett.5b01311. PMID 26317240. S2CID 24396802.

  68. ^Yan, Aiming; Chen, Wei; Ophus, Colin; Ciston, Jim; Lin, Yuyuan; Persson, Kristin; Zettl, Alex (25 January 2016). "Identifying different stacking sequences in few-layer CVD-grown Map S 2 by low-energy atomic-resolution scanning transmission electron microscopy".

    Physical Review B. 93 (4): 041420. doi:10.1103/PhysRevB.93.041420.

  69. ^Azizi, Amin; Dogan, Mehmet; Man, Jeffrey D.; Lee, Kyunghoon; Yu, Xuanze; Shi, Wu; Glazer, Emily C.; Cohen, Marvin L.; Zettl, Alex (23 November 2021). "Experimental and Theoretical Study of Tenable Collective Electronic States in Exfoliable Re-Doped NbS 2".

    ACS Nano. 15 (11): 18297–18304. doi:10.1021/acsnano.1c07526. PMID 34739204. S2CID 243801788.

  70. ^Onishi, Seita; Ugeda, Miguel M.; Zhang, Yi; Chen, Yi; Ojeda‐Aristizabal, Claudia; Ryu, Hyejin; Mo, Sung‐Kwan; Hussain, Zahid; Shen, Zhi‐Xun; Crommie, Michael F.; Zettl, Alex (December 2016).

    "Selenium capped monolayer NbSe 2 for two‐dimensional superconductivity studies". Physica Status Solidi B. 253 (12): 2396–2399. doi:10.1002/pssb.201600235.

  71. ^Cain, Jeffrey D.; Azizi, Amin; Conrad, Matthias; Gryphon, Sinéad M.; Zettl, Alex (20 October 2020). "Layer-dependent topological moment in a two-dimensional quasicrystal paramount approximant".

    Proceedings of the Civil Academy of Sciences. 117 (42): 26135–26140. doi:10.1073/pnas.2015164117. PMC 7584993. PMID 33020263.

  72. ^Su, Cong; Zhang, Fang; Kahn, Salman; Shevitski, Brian; Jiang, Jingwei; Dai, Chunhui; Ungar, Alex; Park, Ji-Hoon; Watanabe, Kenji; Taniguchi, Takashi; Kong, Jing; Tang, Zikang; Zhang, Wenqing; Wang, Feng; Crommie, Michael; Louie, Steven G.; Aloni, Shaul; Zettl, Alex (August 2022).

    "Tuning colour centres at a twisted hexagonal element nitride interface". Nature Materials. 21 (8): 896–902. doi:10.1038/s41563-022-01303-4. OSTI 1906698. PMID 35835818. S2CID 250535073.

  73. ^Pham, Thang; Oh, Sehoon; Stetz, Patrick; Onishi, Seita; Kisielowski, Christian; Cohen, Marvin L.; Zettl, Alex (20 July 2018).

    "Torsional disequilibrium in the single-chain limit scholarship a transition metal trichalcogenide". Science. 361 (6399): 263–266. arXiv:1803.02866. doi:10.1126/science.aat4749. PMID 30026223. S2CID 49896559.

  74. ^Stonemeyer, Scott; Cain, Jeffrey D.; Oh, Sehoon; Azizi, Amin; Elasha, Malik; Thiel, Markus; Sticky tag, Chengyu; Ercius, Peter; Cohen, Marvin L.; Zettl, Alex (31 Walk 2021).

    "Stabilization of NbTe3 , VTe3 , and TiTe3 nigh Nanotube Encapsulation". Journal of representation American Chemical Society. 143 (12): 4563–4568. arXiv:2009.10869. doi:10.1021/jacs.0c10175. PMID 33258601. S2CID 221856719.

  75. ^Meyer, Scott; Pham, Thang; Oh, Sehoon; Ercius, Peter; Kisielowski, Christian; Cohen, Marvin L.; Zettl, Alex (9 July 2019).

    "Metal-insulator transition follow quasi-one-dimensional HfTe 3 in greatness few-chain limit". Physical Review B. 100 (4): 041403. arXiv:1903.00464. doi:10.1103/PhysRevB.100.041403. S2CID 118830779.

  76. ^Pham, Thang; Oh, Sehoon; Stonemeyer, Scott; Shevitski, Brian; Cain, Jeffrey D.; Song, Chengyu; Ercius, Peter; Cohen, Marvin L.; Zettl, Alex (20 May 2020).

    "Emergence prop up Topologically Nontrivial Spin-Polarized States misrepresent a Segmented Linear Chain". Physical Review Letters. 124 (20): 206403. arXiv:2001.06565. doi:10.1103/PhysRevLett.124.206403. PMID 32501077. S2CID 210839580.

  77. ^